
SharkFest’24 EUROPE
Vienna, Austria • #sf24eu

A Deep Dive Into Traffic 
Fingerprints using Wireshark 

Luca Deri <deri@ntop.org>, @lucaderi 
Ivan Nardi<ivan@ai2m.eu>, @i_nardi



SharkFest’24 EUROPE
Vienna, Austria • #sf24euAbout Us

• Luca is the founder of the ntop project that develops open source 
network traffic monitoring applications. All code is available at 
https://github.com/ntop 

• Ivan is a network and software engineer at AI2M, where they 
develop data retention and traffic analysis systems. He has been 
involved in DPI for more than 10 years and he is helping Luca (and 
Toni) to maintain nDPI.

2

https://github.com/ntop


SharkFest’24 EUROPE
Vienna, Austria • #sf24euAgenda

1. Introduction to Fingerprint
2. Passive Fingerprinting
3. Protocol Fingerprinting
4. Obfuscated Protocols Fingerprinting

3



SharkFest’24 EUROPE
Vienna, Austria • #sf24eunDPI in a nutshell

• An open-source library providing:
• deep packet inspection engine for network visibility: protocol 

classification, metadata extraction, flow risks computation
• basic blocks for a cyber-security application
• flow risks: an indication that in the flow there is something 

unusual/dangerous to pay attention to
• ~60 different flow risks: self-signed certificate, possible 

SQL/RCE injection, suspicious DGA domain, invalid 
character in SNI...

• algorithms for data analysis: data forecasting, anomaly detection, 
clustering and similarity evaluation, (sub-)string searching and IP 
matching, probabilistic data structures,...

• Available on GitHub, no license required
4



SharkFest’24 EUROPE
Vienna, Austria • #sf24eunDPI & Wireshark

• nDPI can be used with Wireshark via extcap functionality + Lua 
scripting

• The extcap interface is a versatile plugin interface that allows 
external binaries to act as capture interfaces directly in 
Wireshark

• A simple way to have nDPI results into Wireshark/tshark GUI as 
"first-citizen" objects 

• Details: talk by Luca at SharkfestEU 2017
• Example: 100_extcap_tls_mismatch.pcapng (with extcap)

5

https://sharkfest.wireshark.org/retrospective/sfeu/presentations17eu/19.pdf


SharkFest’24 EUROPE
Vienna, Austria • #sf24eu

Part I:
Introduction to Fingerprinting

6



SharkFest’24 EUROPE
Vienna, Austria • #sf24euWhat is a Network Fingerprint 

• Fingerprinting refers to the process of identifying and gathering 
specific information about a system or network to create a unique 
traffic profile or “fingerprint”.

• The term "unique" needs to be interpreted:
• Family: this DHCP packet is generated by an iOS device.
• Application: this TLS flow is generated by the Trickbot malware.

• References
• https://medium.com/@nayanchaure601/os-fingerprinting-

ab5c4d70ec22
• https://medium.com/thg-tech-blog/fingerprinting-network-

packets-53ee32ddf07a

7

https://en.wikipedia.org/wiki/Trickbot
https://medium.com/@nayanchaure601/os-fingerprinting-ab5c4d70ec22
https://medium.com/@nayanchaure601/os-fingerprinting-ab5c4d70ec22
https://medium.com/thg-tech-blog/fingerprinting-network-packets-53ee32ddf07a
https://medium.com/thg-tech-blog/fingerprinting-network-packets-53ee32ddf07a


SharkFest’24 EUROPE
Vienna, Austria • #sf24euHow can I Use a Fingerprint?

• It can then be used to identify and categorise different devices, 
applications, or users based on their specific characteristics and 
behaviours.

• Typical use cases:
• Label network traffic with an application. Example: this HTTPS 

connection was made by Apple Safari.
• Network segmentation: fingerprint DHCP packets to 

automatically assign outdated Windows hosts to specific 
VLANs.

• Cybersecurity: detect unusual behaviour or traffic patterns that 
are unexpected for specific hosts (e.g. label a device as an iPad 
and detect it uses services typical of Android devices) 

8



SharkFest’24 EUROPE
Vienna, Austria • #sf24euWhat We'll Not Cover in This Talk

• There are two type of fingerprint
• Initial flow fingerprint (this talk)
• Post-connection behavioural fingerprint (not this talk)

• Behavioural analysis is used in particular in cybersecurity for detecting 
malware.Tool/paper examples:

• Cisco Joy: https://github.com/cisco/joy 
• Cisco Mercury: https://github.com/cisco/mercury
• Cloudflare, JA4 Signals, https://blog.cloudflare.com/ja4-signals/
• L. Deri, A. Sartiano, Monitoring IoT Encrypted Traffic with Deep 

Packet Inspection and Statistical Analysis, Proceedings of 
CITST-2020

9

https://github.com/cisco/mercury
https://blog.cloudflare.com/ja4-signals/
http://luca.ntop.org/ICITST20.pdf
http://luca.ntop.org/ICITST20.pdf
http://luca.ntop.org/ICITST20.pdf
https://icitst.org/


SharkFest’24 EUROPE
Vienna, Austria • #sf24euActive vs Passive [1/2]

Fingerprints can be determined using passive or active probing 
techniques with usual pro (no traffic, no fingerprints) / cons (traffic is 
injected in the network, hence we're not invisible).

• Passive  
Fingerprints are calculated by 
passively observing network traffic 
and producing the fingerprint 
according to "de-facto" techniques 
(e.g. JA3/JA4).

• As shown later, fingerprinting  
encrypted traffic has interesting  
features as ciphers and extensions  
ease fingerprint calculation.

10



SharkFest’24 EUROPE
Vienna, Austria • #sf24euActive vs Passive [2/2]

• Active fingerprinting is implemented by actively sending packets to 
a target machine in order to receive a response.

• Port scan can be considered a basic fingerprinting technique as it 
can be used to determine the operating system or read the version 
of specific services (e.g. read the HTTP server version and use it to 
find vulnerabilities) for attacking it.

• Some active fingerprinting tools:
• nmap a popular network scanner including host discovery and 

service and operating system detection.
• JARM a TLS server fingerprinting application developed by 

Salesforce. It provides the ability to identify and group malicious 
TLS servers on the Internet.

11

https://nmap.org
https://github.com/salesforce/jarm


SharkFest’24 EUROPE
Vienna, Austria • #sf24euAdvantages and Limitations

• Passive fingerprinting is useful when conducting network 
reconnaissance or monitoring network behaviour over extended 
periods as it is:

• Non-intrusive nature 
• Able to gather information without alerting the target.

• However, passive fingerprinting has limitations
• It may not provide as detailed or accurate information as active 

fingerprinting since it relies solely on observed behaviours (e.g. 
in TLS 1.3 server hello and certificate are encrypted and thus 
they cannot be used albeit very useful).

• Some techniques may be subject to noise or interference, 
impacting the reliability of the gathered information.

12



SharkFest’24 EUROPE
Vienna, Austria • #sf24euFingerprinting Families: Can Happen Anywhere

13

Network

Transport

Physical

Data Link

Session

Presentation

Application

End System

TCP/IP stack (Linux vs Win vs macOS)

Network Library Fingerprinting (TLS/QUIC)

App (RTP/RTSP fingerprint Meet vs Teams vs Zoom)

CDP Protocol, ARP

SNMP, NetBIOS

IEEE 802.11



SharkFest’24 EUROPE
Vienna, Austria • #sf24euFingerprinting Methods

• Protocol Fingerprint
• Analyse a specific protocol (e.g. DHCP fingerprint, or TCP behaviour 

for OS fingerprinting) in order to compute the expected fingerprint. 
Example: Window hosts do not set the Timestamps option in TCP SYN 
packets.

• Content Fingerprint
• Create the fingerprint based on the content of specific protocol. 

Examples:
• HTTP User-Agent
• Android vs iOS vs Windows can be passively detected looking at 

DNS domain names queries (e.g. thinkdifferent.us and 
connectivitycheck.android.com)

•  Firefox connects via TLS to firefox.settings.services.mozilla.com
14

http://thinkdifferent.us
http://connectivitycheck.android.com


SharkFest’24 EUROPE
Vienna, Austria • #sf24euUsing Fingerprinting in Real Life

• Browser fingerprinting  
Collects information about a web browser and device where it's 
running on including browser type, version, operating system, screen 
resolution, installed plugins. This creates a unique “fingerprint” that 
can be used to track the user across different sessions and websites. 

• Policy Enforcement (OS/Device Fencing) 
Restrict to specific VLANs/block old/specific devices/OSs by looking 
at the device MAC address or initial DHCP request. This technique 
plays an important role in securing OT (Operational Technology) 
networks.

• Traffic Prioritisation  
Disable specific traffic (e.g. Zoom Video) in case of limited available 
bandwidth.

15



SharkFest’24 EUROPE
Vienna, Austria • #sf24euFingerprinting in Cybersecurity

• Fingerprinting plays a crucial role in cyber security as it helps in 
detecting threats, securing networks, and implementing targeted 
security measures.

• Defenders:
• Match malware signatures (e.g. TLS fingerprint or SSL certificate 

hash) and block malicious traffic.
• Prevents massive scanners from exploring network services.

• Attackers
• Use fingerprinting to detect flaws (e.g. CVEs) that can be used to 

attack the system.
• During reconnaissance, identify application/OS version in order to 

target attacks towards weak victims.

16



SharkFest’24 EUROPE
Vienna, Austria • #sf24euFingerprints in MITRE

• MITRE Adversarial Tactics, Techniques, and Common Knowledge 
(Att&ck) is a knowledge base that tracks cyber adversary tactics 
and techniques. Fingerprinting is listed under Techniques / 
Enterprise / System Information Discovery

• MITRE Common Attack Pattern Enumerations and Classifications 
(CAPEC™) is dictionary of known  
patterns of attack employed by 
adversaries to exploit known  
weaknesses in cyber-enabled  
capabilities. CAPEC-224 covers 
fingerprinting.

17

https://attack.mitre.org/techniques/T1082/
https://attack.mitre.org/techniques/T1082/
https://capec.mitre.org/data/definitions/224.html


SharkFest’24 EUROPE
Vienna, Austria • #sf24euFalse Positives vs False Negatives

• Definitions:
• False positives occur when a system or network is wrongly classified, leading to unnecessary security 

measures or alerts.
• False negatives occur when a threat or vulnerability goes undetected due to an inaccurate or incomplete 

fingerprint.
• Caveats:

• Traffic fingerprints are subject to false positives as sometimes it is very simple to mimic devices/apps in 
order to circumvent protections. 

• Fingerprints cannot be be 100% accurate: in the early 
days of fingerprints, tools pretended to identify the exact 
OS and version leading to long device databases. This is 
no longer possible due to network stack randomisation (TCP 
sequence numbers, MAC addresses, ephemeral ports etc).

• Two different devices/OSs/applications can share the  
same/similar fingerprint. This is because they can use the  
same TLS library or the same OS family in different 
flavours (iOS, vs iPad OS, vs macOS)

• Network traffic can be forged, so fingerprints need to be  
carefully used as attackers can inject packets to trick defenders.

18



SharkFest’24 EUROPE
Vienna, Austria • #sf24euLegal and Ethical Considerations of Fingerprinting Techniques 

• The collection and analysis of personal data, such as device or 
browser fingerprints, may raise privacy concerns and require 
compliance with relevant regulations.

• Organisations must ensure that their fingerprinting practices adhere 
to applicable laws and regulations, while also respecting user 
privacy and providing transparency in how their data is used and 
protected.

• Tracking users using fingerprints is not desirable for users but 
widely used in the industry. Companies are periodically introducing 
new features to prevent/limit them: macOS, Android, and many 
browsers (Safari, Firefox, Chrome) support "Do Not Track" feature, 
even if it is often disabled by default (e.g. in Chrome) 

19



SharkFest’24 EUROPE
Vienna, Austria • #sf24eu

Part II
Passive Fingerprinting

20



SharkFest’24 EUROPE
Vienna, Austria • #sf24euPrior Art: Some OS Fingerprinting Tools

• Passive Fingerprinting
• p0f
• prads (Passive Real-time Asset Detection System)
• SATORI: Python rewrite of passive OS fingerprinting tool. 

• Active Fingerprinting
• nmap: network scanner featuring OS fingerprinting 
• Ettercap / NetworkMiner: network forensics tools able to 

determine OS type/version 
• XProbe2:  remote active operating system fingerprinting tool

21

Status
Not Actively Developed/Maintained
Stand-by/Maintenance
Actively Developed

https://lcamtuf.coredump.cx/p0f3/
https://github.com/gamelinux/prads
https://github.com/xnih/satori
https://nmap.org
https://www.ettercap-project.org
https://www.netresec.com/?page=NetworkMiner
https://github.com/binarytrails/xprobe2


SharkFest’24 EUROPE
Vienna, Austria • #sf24eup0f Overview [1/2]

p0f generates TCP signatures in the format below that are then mapped against a 
signature database (currently mostly outdated).


sig = ver:ittl:olen:mss:wsize,scale:olayout:quirks:pclass 

ver        - signature for IPv4 ('4'), IPv6 ('6'), or both ('*').
ittl       - initial TTL used by the OS.
olen       - length of IPv4 options or IPv6 extension headers
mss        - maximum segment size, if specified in TCP options
wsize      - TCP window size
scale      - window scaling factor, if specified in TCP options or '*'
olayout    - comma-delimited layout and ordering of TCP options, if any
quirks     - comma-delimited properties and quirks (e.g. ENC or dont't     
             fragment) observed in IP or TCP
pclass     - payload size classification: '0' for zero, '+' for non-zero,
             '*' for any.

22

https://lcamtuf.coredump.cx/p0f3/README


SharkFest’24 EUROPE
Vienna, Austria • #sf24eup0f Overview [2/2]

23

.-[ 192.168.1.117/54868 -> 213.19.144.104/443 (syn) ]- 
| 
| client   = 192.168.1.117/54868 
| os       = Mac OS X 
| dist     = 0 
| params   = generic fuzzy 
| raw_sig  = 4:64+0:0:1460:65535,5:mss,nop,ws,nop,nop,ts,sok,eol+1:df:0 
| 
`---- 

Example of TCP signatures

.-[ 192.168.1.7/53251 -> 184.25.204.10/80 (http request) ]- 
| 
| client   = 192.168.1.7/53251 
| app      = ??? 
| lang     = English 
| params   = none 
| raw_sig  = 1:Host,Accept=[*/*],Accept-Language=[en-US;q=1],Connection=[keep-
alive],Accept-Encoding=[gzip, deflate],User-Agent:Accept-Charset,Keep-Alive:Argo/9.1.0 
(iPhone; iOS 10.2; Scale/2.00) 
| 

Using the same approach p0f can also fingerprint application protocols such as HTTP. 



SharkFest’24 EUROPE
Vienna, Austria • #sf24euHow to Create a Fingerprint

As seen with p0f, creating a fingerprint is usually not rocket science 
if the following principles are satisfied:

• Extract protocol/application unique characteristics.
• Ignore parameters that are random (e.g. TLS GREASE*), 

request-specific (e.g. a hostname or the SNI).
• Concat parameters after transformations (e.g. sort) to make the 

string fingerprint and avoid the fingerprint to be circumvented.
• Optionally hash the fingerprint to create a fixed-length 

fingerprint string.

24

*GREASE (Generate Random Extensions And Sustain Extensibility), a mechanism to prevent 
extensibility failures in the TLS ecosystem. It reserves a set of TLS protocol values that may be 
advertised to ensure peers correctly handle unknown values.



SharkFest’24 EUROPE
Vienna, Austria • #sf24euHash Functions Primer

• A hash function is used to map arbitrary long data into a fixed size 
("compress" ) string of bytes.

• Hash functions Properties:
• Uniformity: distribute uniformly data across a finite domain 

(e.g. 0 ... 2^32-1).
• Collision Resistance: it should be difficult to find two different 

inputs that produce the same hash value.
• Avalanche effect: a small change in the input should produce a 

significantly different hash value.

25



SharkFest’24 EUROPE
Vienna, Austria • #sf24euHash vs Raw Fingerprint

• Due to the nature of hash functions, fingerprints that use them are 
designed for equality matching (e.g. identify malware X whenever 
its fingerprint is detected in traffic)

• Raw (i.e. un-hashed) fingerprints have variable length however they 
can be used for similarity matching (e.g. TCP stack fingerprint X is 
similar to fingerprints produced by Windows systems)

26



SharkFest’24 EUROPE
Vienna, Austria • #sf24eu(Un-hashed) Fingerprint Similarity 

• Due to the nature of hash functions, only un-hashed fingerprints can be 
searched for similarity matching as follows:

• Transform fingerprint string into a vector of numbers, a.k.a. word 
embedding in AI parlance: "the representation is a real-valued 
vector that encodes the meaning of the word in such a way that the 
words that are closer in the vector space are expected to be similar 
in meaning" (source Wikipedia).

• Use labelled data (e.g. pre-classified traffic) to create a database of 
fingerprints and search for similarity (K-NN, K Nearest Neighbour). 

• Vector databases are able to index numerical vectors and search 
for similarity using approximate nearest neighbourhood algorithms 
with the goal of finding the closest database match to the searched 
vector. 

27

https://en.wikipedia.org/wiki/Word_embedding#cite_note-1
https://en.wikipedia.org/wiki/Word_embedding#cite_note-1
https://en.wikipedia.org/wiki/Word_embedding#cite_note-1
https://en.wikipedia.org/wiki/Word_embedding#cite_note-1


SharkFest’24 EUROPE
Vienna, Austria • #sf24eu

Part III
Protocol Fingerprinting

28



SharkFest’24 EUROPE
Vienna, Austria • #sf24euFingerprints and Wireshark

In the following slides, we'll show some Lua scripts we developed 
and that are available at

• https://github.com/ntop/nDPI/tree/dev/wireshark

29



SharkFest’24 EUROPE
Vienna, Austria • #sf24euTCP/IP Stack Fingerprinting [1/3]

• As discussed earlier, TCP/IP stack fingerprinting is one of the most 
popular methods for detecting the OS from network traffic.

• Unfortunately there is no single standard/representation hence there 
are various formats produced by the many available fingerprint tools.

• As Wireshark does not natively features a TCP/IP stack fingerprint, 
we have developed one as part of our contribution.

• The fingerprint format is the following  
<TCP Flags>_<TTL>_<TCP Win>_SHA256(<Options Fingerprint>)

30

Note: 
- The fingerprint is computed on the SYN (req) packet 
- For IPv6 we use Hop Limit instead of TTL



SharkFest’24 EUROPE
Vienna, Austria • #sf24euTCP/IP Stack Fingerprinting [2/3]

• Raw:      2_128_32768_0205B4010104
• Hashed: 2_128_32768_44bd01ba086e

31



SharkFest’24 EUROPE
Vienna, Austria • #sf24euTCP/IP Stack Fingerprinting [3/3]

32



SharkFest’24 EUROPE
Vienna, Austria • #sf24euTCP/IP Stack Fingerprinting Findings [1/2]

While studying the TCP fingerprints we have noted some facts. 

Windows
• Does not use the timestamp (8) option.
• Has a default TTL of 128, vs 64 used on Linux etc. 

iOS/iPadOS/macOS (Intel)
• Send SYN+ECE+CRW. Others (including macOS Silicon) just SYN.
• Options (iOS but not iPadOS) end  

with a double EOL. 
 

33



SharkFest’24 EUROPE
Vienna, Austria • #sf24euTCP/IP Stack Fingerprinting Findings [2/2]

• macOS/iPadOS/iOS are similar but not identical
• macOS Intel (SYN+ECE+CRW) and AppleSilicon (SYN) are different so you 

can fingerprint the platform with the TCP/IP stack.
•  iPadOS and iOS are similar but not identical.

• A single OS/device can have multiple fingerprints. Example iPadOS: 
194_64_0_d29295416479, 194_64_65535_d29295416479, 
2_64_65535_d29295416479, 194_64_65535_d3a424420f2a

• Using the TCP/IP stack fingerprint it is possible to find out the OS of embedded 
devices

34

Android Scanner
Linux Wireless 
Label Base Station

https://www.zebra.com/us/en/products/spec-sheets/mobile-computers/handheld/ps20.html
https://ir2s.fr/boutique/etiquettes-electroniques-eeg/peripheriques-et-accessoires-pricer/mini-base-station-pricer/
https://ir2s.fr/boutique/etiquettes-electroniques-eeg/peripheriques-et-accessoires-pricer/mini-base-station-pricer/


SharkFest’24 EUROPE
Vienna, Austria • #sf24euSide Effects of TCP/IP Stack Fingerprinting

35

WireGuard Plain Ethernet

Same client host (macOS) connected to two Raspberry Pi: one over a VPN (Wireguard) 
and the other over plain Ethernet. Different MSS and Window Scale Factor

Fingerprint produced by tools such as nmap and p0f were mostly created for identifying the host 
OS, but they offers interesting side-properties....



SharkFest’24 EUROPE
Vienna, Austria • #sf24euTCP/IP Stack Fingerprinting and Cybersecurity

36

https://zmap.io/ https://github.com/robertdavidgraham/masscan



SharkFest’24 EUROPE
Vienna, Austria • #sf24euHowTo Manipulate TCP Options 

• Using sockets it is possible to manipulate a few (but not all) TCP 
options using the setsockopt() call.

• All supported options are listed in /usr/include/netinet/tcp.h

• Example:

37

int mss = 576;
int result = setsockopt(lsock, IPPROTO_TCP, TCP_MAXSEG, &mss, sizeof(mss));
if (result != 0) {

        perror(0);
        return 1;

 }



SharkFest’24 EUROPE
Vienna, Austria • #sf24euTLS/QUIC Fingerprinting [1/3]

• Contrary to the TCP/IP stack (usually) part of the kernel, for TLS/
QUIC encoder/decoder is implemented by a user-space library 
hence every application sitting on the same OS can potentially use 
different fingerprints.

38



SharkFest’24 EUROPE
Vienna, Austria • #sf24euTLS/QUIC Fingerprinting [2/3]

• JA3 was the first popular fingerprint for SSL/TLS was invented by 
Salesforce in 2017 with goal to produce fingerprints that could be 
easily shared for threat intelligence.

• Two fingerprints: JA3 (client) and JA3S (server). They are created 
concatenating the following fields in the same order they are 
received in the TLS Client Hello (JA3) and TLS Server Hello (JA3S): 
 
TLSVersion,Ciphers,Extensions,EllipticCurves,EllipticCurvePointFormats 
 

skipping GREASE (Generate Random Extensions And Sustain 
Extensibility) extensions.

• JA3 has been replaced by JA4 as in 2023 Google started to 
randomise extensions to prevent JA3 detection thus jeopardising it.

39

https://github.com/salesforce/ja3?tab=readme-ov-file


SharkFest’24 EUROPE
Vienna, Austria • #sf24euTLS/QUIC Fingerprinting [3/3]

• JA4 is the JA3 successor and it comes with additional fingerprints 
named JA4+ (e.g. for TCP, HTTP, SSH...). While JA4 for client 
fingerprinting has been released under BSD 3-Clause, all other are 
patent pending and subject to license. Wireshark implements only 
JA4.

40

https://github.com/FoxIO-LLC/ja4


SharkFest’24 EUROPE
Vienna, Austria • #sf24euJA3/JA4 in Wireshark

41



SharkFest’24 EUROPE
Vienna, Austria • #sf24euBrowser Fingerprints: <cipher list>

42

chrome 129 / brave  1.70.126 / opera 113 / edge 129 
002f,0035,009c,009d,1301,1302,1303,c013,c014,c02b,c02c,c02f,c030,cca8,cca 

Android chrome 111 
002f,0035,009c,009d,1301,1302,1303,c013,c014,c02b,c02c,c02f,c030,cca8,cca9 

macOS firefox 131 
002f,0035,009c,009d,1301,1302,1303,c009,c00a,c013,c014,c02b,c02c,c02f,c030,cca8,cca9 

Windows firefox 131 
002f,0035,009c,009d,1301,1302,1303,c009,c00a,c013,c014,c02b,c02c,c02f,c030,cca8,cca9 

safari iOS 15/18 - macOS 
000a,002f,0035,009c,009d,1301,1302,1303,c008,c009,c00a,c012,c013,c014,c02b,c02c,c02f,c030,cca8,cca9



SharkFest’24 EUROPE
Vienna, Austria • #sf24euBrowser Fingerprints: <extensions list>

43

chrome 129 / brave  1.70.126 / opera 113 / edge 129 
0005,000a,000b,000d,0012,0017,001b,0023,002b,002d,0033,4469,fe0d,ff0 

Android chrome 111 
0005,000a,000b,000d,0012,0015,0017,001b,0023,002b,002d,0033,4469,ff01 

macOS firefox 131 
0005,000a,000b,000d,0017,001c,0022,0023,002b,002d,0033,fe0d,ff01 

Windows firefox 131 
0005,000a,000b,000d,0017,001c,0022,0029,002b,002d,0033,fe0d,ff01 

safari iOS 15/18 - macOS 
0005,000a,000b,000d,0012,0015,0017,001b,002b,002d,0033,ff01 



SharkFest’24 EUROPE
Vienna, Austria • #sf24euBrowser Fingerprints: <signatures list>

44

chrome 129 / brave  1.70.126 / opera 113 / edge 129 
0403,0804,0401,0503,0805,0501,0806,0601 

Android chrome 111 
0403,0804,0401,0503,0805,0501,0806,0601 

macOS firefox 131 
0403,0503,0603,0804,0805,0806,0401,0501,0601,0203,0201 

Windows firefox 131 
0403,0503,0603,0804,0805,0806,0401,0501,0601,0203,0201 

safari iOS 15/18 - macOS 
0403,0804,0401,0503,0203,0805,0805,0501,0806,0601,0201

Repeated



SharkFest’24 EUROPE
Vienna, Austria • #sf24euBrowser Fingerprints in Wireshark [1/2]

45

ndpi.lua
......

Missing JA4_a

https://github.com/ntop/nDPI/blob/dev/wireshark/ndpi.lua


SharkFest’24 EUROPE
Vienna, Austria • #sf24euBrowser Fingerprints in Wireshark [2/2]

46



SharkFest’24 EUROPE
Vienna, Austria • #sf24euRDP (Remote Desktop Protocol) [1/3]

• RDP is a proprietary protocol created by Microsoft to graphically 
connect to hosts on a LAN.

• Until version 5.2 (WinXP) the protocol was not encrypted, but today 
almost all communications are over TLS.

• Until the protocol was unencrypted it was possible to create a 
fingerprint using RDP attributes such screen resolution, keyboard 
language etc., thing that is no longer possible with TLS.

• However JA4 can be the solution as we could use it to fingerprint 
RDP traffic.

47



SharkFest’24 EUROPE
Vienna, Austria • #sf24euRDP (Remote Desktop Protocol) [2/3]

48



SharkFest’24 EUROPE
Vienna, Austria • #sf24euRDP (Remote Desktop Protocol) [3/3]

• Thanks to JA4, it is possible to detect/fingerprint RDP attackers
• RDP client contacts many different hosts
• Often short-living sessions (host scan)

• Example of RDP scan/attacks detected on a service provider 
network:

49



SharkFest’24 EUROPE
Vienna, Austria • #sf24euSSH

• HASSH is a network fingerprinting standard created by Salesforce 
which can be used to identify specific client and server SSH 
implementations. 

• Fingerprints can be easily stored, searched and shared in the form 
of an MD5 fingerprint.

• They can be computed for both client and server and are useful to 
detect changes in SSH client software/configuration. 

• As with JA4:
• HASSH defines two fingerprints: one flow SSH client, and one 

for SSH server.
• JA4+ includes a patented fingerprint names JA4SSH whose 

goal is to fingerprint traffic rather than client/server.
50

https://github.com/salesforce/hassh


SharkFest’24 EUROPE
Vienna, Austria • #sf24euSSH Negotiation

51https://github.com/salesforce/hassh



SharkFest’24 EUROPE
Vienna, Austria • #sf24euHASSH Client Fingerprint

52

Concatenating these algorithms together with a delimiter of ";" and MD5 the 
resulting string, gives the hassh client fingerprint.



SharkFest’24 EUROPE
Vienna, Austria • #sf24euHASSH Server Fingerprint

53

• At https://github.com/0x4D31/hassh-utils/blob/master/hasshdb you can find a 
large SSH fingerprint database.


• As of today, Wireshark  
supports HASSH (ssh.kex.hassh).

https://github.com/0x4D31/hassh-utils/blob/master/hasshdb


SharkFest’24 EUROPE
Vienna, Austria • #sf24euWhat Problems HASSH Addresses ? [1/2]

• HASSH adds contextual information to packet header information.
• The HASSH client is used to fingerprint the client, and thus:

• Allow blocking clients outside of the "allowed set”.
• Detect exfiltration if data when using SSH clients with multiple 

distinct hashes.
• NAT won’t shield different SSH clients as they can now be 

detected with this technique.
• Identify specific client versions.

54



SharkFest’24 EUROPE
Vienna, Austria • #sf24euWhat Problems HASSH Addresses ? [2/2]

• The HASSH server can be used to detect if the server configuration 
is insecure or different from the past.

• In IoT or datacenter where configurations are static (or at least 
under strict control), fingerprint should be predictable.

• Same as HASSH client it can be used to block insecure servers, or 
detect unexpected changes in server configuration. 

55



SharkFest’24 EUROPE
Vienna, Austria • #sf24euEvading SSH Fingerprinting (HASSH) with Arbitrary Ciphers

56

As with JA3, SSH implementations advertise random encryption algorithms in order 
to evade fingerprinting

https://blog.lethalbit.com/evading-ssh-fingerprinting-hassh-with-custom-ciphers/


SharkFest’24 EUROPE
Vienna, Austria • #sf24euJASSH

57https://github.com/FoxIO-LLC/ja4/blob/main/technical_details/README.md



SharkFest’24 EUROPE
Vienna, Austria • #sf24euDHCP [1/2]

• DHCP does not have a  
"standard" fingerprint as JA4 or 
HASSH, but clients can be easily 
fingerprinted analysing DHCP 
options.

• In particular it is possible to  
list all options id's and list 
the parameters request list.

58



SharkFest’24 EUROPE
Vienna, Austria • #sf24euDHCP [2/2]

59

We have fingerprinted popular DHCP devices and embedded them in the ndpi.lua 
script.



SharkFest’24 EUROPE
Vienna, Austria • #sf24eu

Part IV
Obfuscated Protocols 
Fingerprinting

60



SharkFest’24 EUROPE
Vienna, Austria • #sf24euObfuscated traffic

• Traffic content is almost always encrypted, but traffic type/classification (or some traffic 
characteristics) can be usually inferred anyway

• This is basically the goal of any DPI/Network Visibility/Firewall system
• Techniques to avoid detection are often called "obfuscation": the general idea is to make the 

traffic "look like" something else, hiding its true nature
• if it works, the obfuscated traffic will be detected as something else (different traffic 

type or classification): the DPI system has been fooled/bypassed
• blending in with standard and allowed traffic, it increases DPI systems error rate and 

operational costs in computation, time and money. 
• There are two general strategies to obfuscate the traffic:

• to mimic some content that it is allowed, like TLS
• example: encapsulate the traffic in a TLS tunnel

• to randomize the flow content, making it dissimilar to anything that it is specifically 
blocked

• example: (fully) encrypt (again) the traffic, removing any plaintext info (or magic 
word or common patterns)

61

https://www.bamsoftware.com/talks/thesis-proposal.pdf


SharkFest’24 EUROPE
Vienna, Austria • #sf24euObfuscated traffic: general schema

• Is a VPN an obfuscation technique? No, it isn't, even if it does "hide" your traffic *content*
• All VPN services/apps (with their default configuration) are a simple wrapper over OpenVPN, Wireguard or IPSec

• all of these protocols are easily detectable
• Using a VPN you "hide" your traffic content, but you don't obfuscate it

• Sometimes you might want to obfuscate the VPN traffic itself!
• All VPN apps have at least one option to enable some kind of obfuscation

• Example: 110_general_openvpn_over_tls.pcapng
• Example: 111_general_shadowsocks.pcapng

62



SharkFest’24 EUROPE
Vienna, Austria • #sf24euFingerprints of obfuscated traffic

• We will show you that even obfuscated traffic can be easily fingerprinted/identified
• We might not be able to detect the "real" (i.e. original) traffic type, but it is usually enough to 

know that some kind of obfuscated algorithm has been used 
• Obfuscated traffic is (very) suspicious per se

• Compared to the fingerprints Luca talked about, these new fingerprints:
• are still cheap to calculate, even if they require more than 1 packet per flow
• might be a more complex object than a simple string or number

• Three major user cases:
• Fingerprint of obfuscated OpenVPN
• Fingerprint of obfuscated TLS handshakes
• Fingerprint of Fully Encrypted Protocols

• We implemented these logics in nDPI in an efficient way, allowing us to identify (some) obfuscated 
flows with good precision and low false positives rates, using minimum resources, at scale and in 
real time with live traffic

• Wireshark (via extcap) will be used to show the final results and the raw fingerprints; these 
fields can be filtered or you can collect some statistics about them, as usual

63



SharkFest’24 EUROPE
Vienna, Austria • #sf24euObfuscated traffic: disclaimer

• Detecting obfuscated traffic might be a sensitive topic; different people might have 
different opinions about it. However:

• the techniques we will talk about are based on academic papers publicly 
available and presented at major conferences

• responsible disclosure: all involved parties have been notified before papers 
publication

• We are not the authors of these papers
• In our tests we used some VPN apps and some V2Ray protocols (ShadowSocks, 

VMess, Trojan,...) with their default/simplest configurations and without enabling 
advance features.

• The original papers have some considerations/results about these more 
complex configurations.

• Tradeoff between ease of deployment and obfuscation efficiency
• V2Ray is still (one of) the best choice if you need to obfuscate your own traffic

64

https://www.v2ray.com/en/index.html


SharkFest’24 EUROPE
Vienna, Austria • #sf24euFingerprint of OpenVPN

• OpenVPN is Open to VPN Fingerprinting, Xue et al.,USENIX 
Security '31, 2022

65

https://www.usenix.org/conference/usenixsecurity22/presentation/xue-diwen


SharkFest’24 EUROPE
Vienna, Austria • #sf24euOpenVPN: overview

• One of the most used (and old) protocol for 
creating VPN

• A dozen of different messages; the first 
byte of the OpenVPN header is the 
message type (i.e. opcode)

• Initial handshake with a TLS-style 
exchange of key materials

• Example: 120_openvpn_plain_tcp.pcapng

66



SharkFest’24 EUROPE
Vienna, Austria • #sf24euOpenVPN: XOR patch

• OpenVPN protocol is easily detectable (via message types)
• In 2013, a patch adding obfuscation capability to OpenVPN has been 

proposed
• Simply XOR with a shared key
• Not accepted by upstream maintainers: no proper evaluation of security 

risks/claims
• Nonetheless, in the following years this patch has been included in a lot of 

different proprietary VPN apps
• At least from 2020 it is well known that this patch has a fatal flow: the first byte 

of each message is always encrypted with the same byte of the key. 
Therefore, in a connection, the same opcode would be always mapped/
encrypted to the same value

• The paper (from 2022) found that 34 out of 41 “obfuscated” VPN 
configurations are vulnerable to this (and similar) "bug"

67

https://github.com/clayface/openvpn_xorpatch
https://tunnelblick.net/cOpenvpn_xorpatch.html
https://github.com/clayface/openvpn_xorpatch/issues/16#issuecomment-700089581


SharkFest’24 EUROPE
Vienna, Austria • #sf24euOpenVPN: fingerprint

• Basic idea:
• The set of the opcodes of the first packets of a standard OpenVPN 

flow is quite peculiar:
• one (different) opcode (i.e. resets) per direction only at the very 

beginning
• real handshake with a few different opcodes (i.e. ack/control/...)
• from one packet forward, the opcode is always the same (i.e. 

data)
• Because of the XOR patch flaw, an obfuscated OpenVPN flow has a 

"similar" set, i.e. a set with the same cardinality
• The fingerprint is the ordered collection of the first byte of the initial packets
• Example: 121_openvpn_udp_obfuscated.pcapng (with and without extcap)

68



SharkFest’24 EUROPE
Vienna, Austria • #sf24euOpenVPN: results

• We tested all the VPN apps vulnerable to this heuristic according to 
the original paper

• All of them (but one) are still vulnerable
• Our implementation detect these flows with TPR = ~100%
• What about false positives?

69



SharkFest’24 EUROPE
Vienna, Austria • #sf24euOpenVPN: results

Controlled traffic without 
obfuscated OpenVPN flows

Matches/Total flows Real traffic from an ISP Matches/Total 
flows

Firefox (random sites) 0/4053 TCP 0/544066
Chrome (random sites) 0/6746 UDP 20/559791
Android (random apps, web, 
games, calls)

0/3315 TCP (443 only) 4/3429006

Edge (random sites) 0/7372 UDP (no 53, 443, 2152, 4500) 40/298849
iPhone (random apps, web) 0/3224 UDP(443 only) 25/988079
Office span port (Win, Linux, 
VM, Phones)

0/3968 STUN 0/106488

IPv6 (no 53, 443) 2/879107
RTP and DTLS 6/8452

• FPR (worst case) =
• ~1*10^-5 (with 10 pkts per flow)
• ~3*10^-6 (with 20 pkts per flow)

70



SharkFest’24 EUROPE
Vienna, Austria • #sf24euFingerprint of obfuscated TLS

• Fingerprinting Obfuscated Proxy Traffic with Encapsulated TLS 
Handshakes, Xue et al.,USENIX '24

71

https://www.usenix.org/conference/usenixsecurity24/presentation/xue-fingerprinting
https://www.usenix.org/conference/usenixsecurity24/presentation/xue-fingerprinting


SharkFest’24 EUROPE
Vienna, Austria • #sf24euTLS: handshake

• Different messages 
exchanged in multiples 
TCP packets

• Burst/flight: consecutive 
packets sent in the 
same direction

• Only "full" handshake, 
no session resumption 
or 0RTT

72



SharkFest’24 EUROPE
Vienna, Austria • #sf24euObfuscated TLS fingerprinting

• Terminology:
• "packets/bytes distribution" == distribution/histogram of packets 

size and number
• "burst/flight distribution" == packets/bytes distribution of all the 

packets belonging to the same burst
• Basic idea:

• the packets/bytes distribution of a (plain) TLS handshake (i.e. 
bursts distribution) is quite unique

• this fingerprint is still detectable if the handshake is encrypted/
proxied/obfuscated/tunneled

• The fingerprint is the packets/bytes distribution of the initial bursts

73



SharkFest’24 EUROPE
Vienna, Austria • #sf24euTLS: statistics

517 = 512 + 5 (header)

PQ

Session Resumption + ECHSession Resumption

74

https://mailarchive.ietf.org/arch/msg/tls/8wXwhM1d5WSmROHFSgrTyFmWN2o/


SharkFest’24 EUROPE
Vienna, Austria • #sf24euTLS: new features

• CH size and its characteristics haven't really changed for a long 
time, since 2013

• In the last years, two new features have been developed and also 
deployed:

• Post-Quantum algorithms
• Encrypted Client Hello

• These two extensions have a significant impact on CH size

75



SharkFest’24 EUROPE
Vienna, Austria • #sf24euTLS: Post Quantum algorithms

• Idea: deploy today new cryptographic algorithms secure against 
future quantum computers

• For details: "Real-world post-quantum TLS in Wireshark" by 
Peter Wu, SharkFestUS-24

• Effects: CHs (and SHs) are significant bigger (~1200 more bytes) 
because of the new crypto key material

76



SharkFest’24 EUROPE
Vienna, Austria • #sf24euTLS: Encrypted Client Hello

• ClientHello messages are sent in cleartext. ECH is a new TLS 
extension allowing sensitive information (SNI, ALPNs) to be sent 
"encrypted" by the client 

• Goal: to ensure that connections to servers/sites in the same 
anonymity set are indistinguishable from one another. 

• Basically some kind of "legal"/"allowed" domain fronting
• Two CHs are involved:

• Outer CH: in cleartext, with a SNI referring to the anonymity set
• Inner CH: encrypted, with the "real"/hidden SNI

77



SharkFest’24 EUROPE
Vienna, Austria • #sf24euTLS: Encrypted Client Hello

• The fact that ECH is being used is still visible
• Greasing: clients might send dummy/fake ECH extension that 

is ignored by the server but it might help deployment ("don't 
stick out") and avoid ossification.

• For the purposes of this talk: CH with ECH is a little bit bigger (~150 
more bytes)

• Wireshark and TLS libraries don't decrypt ECH, yet. Preliminary 
patches from Yaroslav Rosomakho, @ZScaler

• Example: 130_ech.pcap (with standard and wireshark-echkeylog)
• Example: 131_firefox_ech_pq_all_combinations.pcap

78

https://mailarchive.ietf.org/arch/msg/tls/EI6Gx1KPFdEflWfaKKt-XiAO08g/
https://mailarchive.ietf.org/arch/msg/tls/EI6Gx1KPFdEflWfaKKt-XiAO08g/
https://mailarchive.ietf.org/arch/msg/tls/EI6Gx1KPFdEflWfaKKt-XiAO08g/
https://mailarchive.ietf.org/arch/msg/tls/EI6Gx1KPFdEflWfaKKt-XiAO08g/


SharkFest’24 EUROPE
Vienna, Austria • #sf24euTLS: statistics

79



SharkFest’24 EUROPE
Vienna, Austria • #sf24euTLS: statistics

80



SharkFest’24 EUROPE
Vienna, Austria • #sf24euTLS: statistics

81



SharkFest’24 EUROPE
Vienna, Austria • #sf24euObfuscated TLS

• TLS flows have a quite unique fingerprint about the packets/bytes 
distributions of their handshake

• The common idea underpinning all forms of proxying and tunneling is that 
of nested protocol stacks, where one protocol stack is encapsulated within 
the payload of another protocol

• This fingerprint is still detectable even if the TLS handshake is encrypted/
obfuscated/encapsulated

• Core reason: tunneling/encryption doesn't change packet timing/
direction and size (too much, at least); it doesn't usually add/remove 
packets

• This fingerprint is detectable
   regardless of the specific obfuscation
   technic: it is protocol agnostic

82



SharkFest’24 EUROPE
Vienna, Austria • #sf24euFingerprint before/after obfuscation

• Example: ShadowSocks (111_general_shadowsocks.pcapng)

• Original flow bursts 
(bytes): {517, 6599, 
273, 648}

• ShadowSocks flow 
bursts (bytes): {636, 
6767, 375, 682}

83



SharkFest’24 EUROPE
Vienna, Austria • #sf24euFingerprint before/after obfuscation

• Example: TLS over TLS (132_vmess-tcp-tls_curl.pcapng)

• Original flow bursts 
(bytes) : {517, 
6600, 273, 648}

• VMess flow bursts 
(bytes): {663, 6750, 
345, 672}

84



SharkFest’24 EUROPE
Vienna, Austria • #sf24euImplementation

• We create some models with "standard" TLS flows (web/browser traffic) 
as reference

• With real traffic, we evaluate the burst bytes/pkts distribution (in a sliding 
window) through the initial portion of the flow: if it "looks like" the 
distribution of "standard"/reference TLS traffic, then it is likely that we 
found an obfuscated TLS handshake

• From a mathematical point of view, "looks like" means "the distance 
between this specific distribution and the reference model is less than a 
threshold"

• Threshold value is choose as tradeoff between TPR and FPR
• Example: 133_trojan-tcp-tls.pcapng (with extcap)
• Example: 134_vmess-websocket.pcapng (with extcap)
• Example: 135_shadowsocks-tcp.pcapng (with extcap)

85



SharkFest’24 EUROPE
Vienna, Austria • #sf24euTLS: results

Controlled traffic with only obfuscated 
TLS flows

Matches/Total flows

Firefox + ShadowSocks 303/426
Firefox + ShadowSocks(2) 1600/2176
Chrome + VMess over TLS 1692/2366
Chrome + VMess over Websocket 2428/3638
Firefox + Trojan over TLS 971/1317

• TPR = ~70%(similar to paper results)
86



SharkFest’24 EUROPE
Vienna, Austria • #sf24euTLS: results

Controlled traffic without 
obfuscated TLS flows

Matches/Total flows Real traffic from an ISP Matches/Total 
flows

Firefox (random sites) 3/4053 TCP 318/544066
Chrome (random sites) 4/6746 UDP 311/559791
Android (random apps, web, 
games, calls)

0/3315 TCP (443 only) 559/3429006

Edge (random sites) 1/7372 UDP (no 53, 443, 2152, 4500) 1739/298849
iPhone (random apps, web) 0/3224 UDP(443 only) 1769/988079
Office span port (Win, Linux, 
VM, Phones)

2/3968 STUN 0/106488

IPv6 (no 53, 443) 226/879107
RTP and DTLS 34/8452

• FPR (worst case) = ~0.7*10^-3
87



SharkFest’24 EUROPE
Vienna, Austria • #sf24euTLS: results

• Is FPR ~1*10^-3 good enough?
• Usually, no, it isn't. Due to the huge volume of traffic passing through 

a real network and the low base rate of obfuscated traffic in the wild, 
this fingerprinting logic would likely label more legitimate connections 
as proxied than actual proxied connections

• This fingerprint can be used anyway as a foundation upon which 
build further application logic, for example moving from "obfuscated 
flow" to "obfuscated server"

• active probing of suspected obfuscated servers
• statistical analysis of the overall traffic of suspected obfuscated 

servers
• Example: 138_obfuscated_servers_analysis_1.pcapng (via extcap)
• Example: 139_obfuscated_servers_analysis_2.pcapng (via extcap)

88



SharkFest’24 EUROPE
Vienna, Austria • #sf24euObfuscated TLS fingerprinting

• Limitations and future work:
• add support for session resumption/0RTT
• take a look at UDP/QUIC (MASQUE)
• track ECH/PQ development/deployment

• Chrome 131 (06/12) will move from Kyber to ML_KEM
• After one year, Cloudflare is re-enabling ECH

• what about no-web traffic (i.e. IoT, VPN)?
• TLS stack on IoT devices and VPN apps is usually not fully-featured 

as in major browsers
• OpenVPN may use an obfuscated-like TLS handshake and most 

VPN apps provided a configuration option to encapsulate OpenVPN 
traffic on a TLS tunnel: this fingerprint might work with VPN also

89

https://security.googleblog.com/2024/09/a-new-path-for-kyber-on-web.html
https://community.cloudflare.com/t/early-hints-and-encrypted-client-hello-ech-are-currently-disabled-globally/567730
https://developers.cloudflare.com/ssl/edge-certificates/ech/


SharkFest’24 EUROPE
Vienna, Austria • #sf24euFingerprinting of Fully Encrypted Protocols

• How the Great Firewall of China Detects and Blocks Fully 
Encrypted Traffic, Mingshi Wu et al., USENIX Security 32, 2023

90

https://www.usenix.org/conference/usenixsecurity23/presentation/wu-mingshi
https://www.usenix.org/conference/usenixsecurity23/presentation/wu-mingshi


SharkFest’24 EUROPE
Vienna, Austria • #sf24euFully Encrypted Protocols

• Fully Encrypted Protocols (FEPs): every byte in a connection 
appears independently and uniformly random.

• TLS, HTTP, QUIC are NOT FEP
• Examples: ShadowSocks, OBFS, VMess

91



SharkFest’24 EUROPE
Vienna, Austria • #sf24euFEP example

• Protocol bytes mapped to 
grayscale pixel: TLS and 
OBFS4.

• See: "How cryptography relates 
to Internet censorship 
circumvention", David Fifield, 
2024

92

https://github.com/net4people/bbs/issues/391
https://github.com/net4people/bbs/issues/391
https://github.com/net4people/bbs/issues/391
https://github.com/net4people/bbs/issues/391


SharkFest’24 EUROPE
Vienna, Austria • #sf24euFEPs fingerprinting

• Basic idea:
• most common protocols are not FEP
• measure the entropy/randomness of the flow: if it is "too much", 

then it is likely a FEP
• The fingerprint is the flow entropy
• The concept seems simple enough: the hard part is how to measure 

the entropy to avoid too many false positives
• Example: 140_shadowsocks.pcap (with extcap)
• Results: TPR = ~100% with ShadowSocks. What about false 

positives?

93



SharkFest’24 EUROPE
Vienna, Austria • #sf24euFEPs: results

Controlled traffic without 
FEPs

Matches/Total flows Real traffic from an ISP Matches/Total 
flows

Firefox (random sites) 0/4053 TCP 8926/544066
Chrome (random sites) 0/6746 UDP 0/559791
Android (random apps, web, 
games, calls)

12/3315 TCP (443 only) 0/3429006

Edge (random sites) 1/7372 UDP (no 53, 443, 2152, 4500) 0/298849
iPhone (random apps, web) 0/3224 UDP(443 only) 0/988079
Office span port (Win, Linux, 
VM, Phones)

16/3968 STUN 0/106488

IPv6 (no 53, 443) 0/879107
RTP and DTLS 0/8452

• FPR (worst case) = ~1*10^-3
94



SharkFest’24 EUROPE
Vienna, Austria • #sf24eu

Part V
Obfuscation pitfalls

95



SharkFest’24 EUROPE
Vienna, Austria • #sf24euDon't roll your own crypto obfuscation code

• Avoiding fingerprints and deploy a working obfuscation technique is 
hard

• We have just seen a few examples where with some basic 
statistic algorithms we can fingerprint/identify obfuscated flows

• There are good working programs/libraries that you should use if 
you want to obfuscate some traffic: V2Ray, uTLS, Tor...

• Don't try to roll your own obfuscation code: you will do it wrong and 
it will fail in a catastrophic/hilarious way!

96



SharkFest’24 EUROPE
Vienna, Austria • #sf24euDon't roll your own crypto obfuscation code

• "[it] provides extended online freedom. It [...] get[s] past any VPN 
blocks"

• "Circumvent Censorship Feature: [...] protocol-level anti-censorship"

97



SharkFest’24 EUROPE
Vienna, Austria • #sf24euDon't roll your own crypto obfuscation code

• "XXX is an 
OpenVPN tunnel 
masked to look like 
HTTPS traffic. This 
protocol is very 
helpful on restrictive 
networks"

• "Don't stick out" 
problem: if your 
feature is visible at 
the network level, 
and you are the only 
one using it, you can 
trivially be detected

98



SharkFest’24 EUROPE
Vienna, Austria • #sf24euDon't roll your own crypto obfuscation code

• Adding some 
unexpected or 
carefully crafted data/
packets at the 
beginning of the flow 
might be a good idea

• Standard ports 443/53 
are problematic: 
unknown traffic on 
443/53 might be more 
suspicious than on 
random ports 

99



SharkFest’24 EUROPE
Vienna, Austria • #sf24euAvoiding fingerprint is hard

• In 10/2022 the bandwidth on a Snowflake bridge suddenly dropped: 
*some* Android devices were not able to connect to the bridge anymore

• Culprit: JA3C fingerprint!
• "Go crypto/tls ciphersuite ordering does not directly have to do with 

mobile versus desktop; it instead hinges on whether the platform has 
hardware AES-GCM acceleration or not. Some mobile platforms do not 
have such acceleration, while most desktop platforms do, which is why 
the ciphersuite order and hence the TLS fingerprint tends to differ 
across mobile and desktop". Details here 

• Solution: use uTLS on Tor browser. It "provides ClientHello 
fingerprinting resistance, low-level access to handshake, fake session 
tickets ..."

• Bottom line: the fingerprint of your SW might depend on the HW!
100

https://github.com/net4people/bbs/issues/131#issuecomment-1280284051
https://github.com/refraction-networking/utls


SharkFest’24 EUROPE
Vienna, Austria • #sf24euThank you !

See you at ntopConf 2025

101

https://www.ntop.org/ntopconf25/

https://www.ntop.org/ntopconf25/

